MATLAB データ処理・可視化講習会 2017.10.18(水)

教育革新センター MATLAB TA 田所 祐一 本多 隆之

② 資料をダウンロードしてください 「MATLAB TA 講習会」で検索

MATLAB[®]Elt

- 数値計算用のプログラム言語.
- 行列計算, 複素計算, グラフが容易に利用でき, 高度な解析 プログラムなども提供されている.
- 汎用言語に比べて短時間で科学技術計算が可能.
- 全世界5,000校以上の大学で導入.
- 東工大はライセンスを締結. 全学生がMATLABを利用できる.
 学生は個人のPCに4台までインストールできる.

特徴

- 簡潔なプログラミング言語
- 容易なデータ操作
- ■豊富な数学関数・ファイルI/O
- 2次元/3次元可視化機能
- ハードウェアとの連携機能

MathWorks[®]

MATLAB/Simulink はどこで使われているのか?

- 航空宇宙 / 防衛
- 自動車
- 医療 / 創薬
- 化学 / 石油
- 通信
- コンピュータ / オフィス機器
- 教育
- 電機 / 半導体
- 金融
- 工業オートメーション
- 計測
- エネルギー

使用例(運動方程式の数式処理)

Live Editor 2リンクマニピュレータのシンボリック計算デモ

東工大MATLAB TA

clear

% g: 重力加速度, m_i: リンクiの質量, l_gi: リンクiの重心位置
% l_i: リンクiの長さ, I_i: リンクiの慣性モーメント
syms g m_l m_2 l_gl l_g2 l_l l_2 I_1 I_2 real
% theta_i: リンクiの関節角, tau_i: リンクiのトルク
syms theta_l(t) theta_2(t) tau_l(t) tau_2(t)

2リンクマニビュレータの各リンクの重心座標 (x_{gi}, y_{gi}) を関節角 θ_i から求める

x_gl = l_gl * cos(theta_l); y_gl = l_gl * sin(theta_l); x_g2 = l_l * cos(theta_l) + l_g2 * cos(theta_l+theta_2); y_g2 = l_l * sin(theta_l) + l_g2 * sin(theta_l+theta_2);

diff コマンドで時間微分を計算する

$$v_gl = diff([x_g1; y_g1], t), v_g2 = diff([x_g2; y_g2], t)$$

$$\begin{pmatrix} -l_{g1}\sin(\theta_{1}(t))\frac{\partial}{\partial t} \theta_{1}(t) \\ l_{g1}\cos(\theta_{1}(t))\frac{\partial}{\partial t} \theta_{1}(t) \end{pmatrix}$$

$$v_{g2(t)} = \begin{pmatrix} -l_{g2}\sin(\theta_{1}(t) + \theta_{2}(t)) \left(\frac{\partial}{\partial t} \theta_{1}(t) + \frac{\partial}{\partial t} \theta_{2}(t)\right) - l_{1}\sin(\theta_{1}(t))\frac{\partial}{\partial t} \theta_{1}(t) \\ l_{g2}\cos(\theta_{1}(t) + \theta_{2}(t)) \left(\frac{\partial}{\partial t} \theta_{1}(t) + \frac{\partial}{\partial t} \theta_{2}(t)\right) + l_{1}\cos(\theta_{1}(t))\frac{\partial}{\partial t} \theta_{1}(t) \end{pmatrix}$$

運動エネルギーの総和は

$$K(t) =$$

$$\frac{I_1\sigma_1}{2} + \frac{I_2\sigma_1}{2} + \frac{I_2\sigma_2}{2} + I_2\frac{\partial}{\partial t} \theta_1(t)\frac{\partial}{\partial t} \theta_2(t) +$$

where

$$\sigma_1 = \left(\frac{\partial}{\partial t} \ \theta_1(t)\right)^2$$

 $\sigma_2 = \left(\frac{\partial}{\partial t} \ \theta_2(t)\right)^2$

ポテンシャルエネルギーの総和は

(Live Script, Symbolic Math Toolbox利用)

使用例 (無限級数の数式処理)

和が黄金比になる無限級数

syms n

f = (-1)^(n+1)*factorial(2*n+1)/(factorial(n+2)*factorial(n))/4^(2*n+3)

```
f =
```

$$\frac{(-1)^{n+1} \frac{1}{4^{2n+3}} (2n+1)!}{(n+2)! n!}$$

symsum 関数を使って無限級数の和を計算します。

gr = symsum(f, n, 0, Inf) + 13 / 8

gr =

 $\frac{\sqrt{5}}{2} + \frac{1}{2}$

(Live Script, Symbolic Math Toolbox利用)

(Simulink, Embedded Coder利用)

使用例 (音声処理)

使用例 (ロゴの立体表示)

_	_		
	t	titech_logo_surf.m 🗶 🕂	
1		%% 初期化	
2	-	clear	
3	-	close all	
4			
5		8% 画像の読み込みと処理	
6			
7	-	img = imread('logo.png'); % 読み込み	200
8			100 ~
9	-	img_mono = imcomplement(rgb2gray(img)); % グレースケールにして反転	0
10			600
11	-	surf(img_mono); % 明度をzの値としてsurfaceフロット	5
12			
13	_	axis equal % X,y,Zカ回の難の大クロルをそろえる 	
14	_	axis visoo » 凹転させても表示される凶切入ささか変わらないようにする abading interp & 補問シューディングエー ビニレオオルシーを非まデにする	
15	_	snauing interp » millioンエーティングモートにしてメッジュを非表示にする	

(MATLABのみで可能)

使用例(2重振り子のシミュレーション)

(Simulink, Simscape Multibody使用)

MATLAB/Simulinkを使うと...

- 数式処理や高精度な科学・技術計算が簡単にできる
- 豊富な可視化機能を使って結果をグラフに出力できる
- 物理モデルをシミュレーションできる
- 作成したモデルを実際のハードウェアにデプロイできる

東エ大でのMATLABの利用方法

- 1. 演習室のPCにインストールされているものを使う
- 2. TSUBAME上で利用する
- 3. 研究室や個人所有のPCにインストールして使う
- 学生は個人所有のPCに4台までインストールできます!
- 詳しくはGSICのウェブサイトを参照
- http://tsubame.gsic.titech.ac.jp/MATLAB-TAH_Student
- 「東エ大 MATLAB」で検索!

MATLAB TAについて

我々MATLAB TAはMATLAB/Simulinkの活用を支援しています

MATLAB Office Hour

インストールから実践的な使い方まで、 MATLAB/Simulinkに関する質問にTAが対応します!

実施時間(201730)

				and the second				
	月曜日 火曜日		水曜日	木曜日	金曜日			
	9:00 13:2		10:45	10:45	10:45			
			1	1	1			
	12:15	14:50	12:15	14:50	14:50			
	場所 : ■ 南3号館2階リフレッシュルーム ■ 図書館3階グループ研究室							
	連絡先: sim_edu@citl.titech.ac.jp							
講習会・Office Hourの詳細や最新情報はWebをチェック!								
	♥@MATLAB titech または 東工大 MATLAB TA							

質問がある際はぜひオフィスアワーにお越しください。

講習会の流れ

13:30~14:10 1.「MATLABとは?」「何ができるの?」 2. MATLABの基礎 3. データ処理・可視化に便利な機能の紹介と実演

(5分休憩)

14:15~15:00 4. 実践演習(実演の内容を各自で再現していただきます) 5. MATLABの自学用教材の紹介

質問は随時受け付けます。 わからなくなったらいつでも聞いてください!

MATLABを電卓として使う

コマンドウィンドウに式を入力して計算させてみよう

MATLAB R2016a - academic use	
ホーム プロット アプリケーション 🗔 🖥	🔓 🖻 🗇 🖻 📴 🕐 ドキュメンテーションの検索 👂 🗖
現在のフォルダー ③ コマンド ウィンドウ	 ⑦ ワークスペース
□ 名前▲ fx >>	名前▲ 値
 ■ MATLAB_lecture ■ OfficeHour ■ ProgramingTraining ■ 採点 ▲ denki.m □マンド ウィンドウ fx: 	▲ IIII ● IIIII ● IIIIII

基本的な加減乗除記号 コマンド ウィンドウ >> 3+5 足し算: + 引き算: -掛け算: * 割り算: / ans = 累乗 : ^

 $f_{\underline{x}} >> |$ 例題:以下の計算をしてみよう (1) 3 + 5(2) 4 - 9(3) 2 * 3 (4) 1 / 3 (5) 2 ^ 10 (6) (3+2i)*1i

入力し終わったら Enter

8

※MATLABでは1i または 1j を虚数単位として使用する

よく使う数学関数 三角関数 : sin, cos, tan 逆三角関数 : asin, acos, atan, atan2 指数・対数関数: exp, log, log10, log2

など、多数用意されている

ほかにどのようなものがあるかは、各自検索して調べてみよう

例題:以下の計算をしてみよう (1) sin(pi/2) (2) atan(1) (3) exp(1) (4) exp(1i*pi/2)

変数を使う

変数に数値を格納して記憶させる

例1:	例2:
>> a = cos(pi/4);	プログラムでの = は等式ではなく、右辺の結果が
>> b = sin(pi/4);	代人される $\lambda \lambda a = 1$
>> z = a + 1i*b;	$2 \times a = 1 \qquad = 1$
<pre>>> theta = log(z)</pre>	\rightarrow $a = a + a = -1 = -1$

※ >> はコマンドウィンドウでの実行を意味する。入力はしないこと。

※ 行末にセミコロン「;」をつけずに実行すると、右辺の計算結果が表示される

ベクトル・行列の作成と計算

以下の例を試してみよう.

例:
>> x = [1; 2; 3]
>> A = [2 0 0; 1 2 3; 0 0 0]
$$Ax = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

>> A*x

ベクトル・行列は[]で囲んで定義する. スペースまたはカンマで右隣の要素へ, セミコロンで改行.

特殊なベクトル・行列の定義

よく使うベクトル・行列は、専用のコマンドが用意されている

- 範囲ベクトル aからbまでn個のベクトル n 次元の単位行列 m 行n 列の零行列 全要素が1の行列
 - : a:b:c
 - : linspace(a, b, n)
 - : eye(n)
 - : zeros(m, n)
 - : ones(m, n)

例:3行4列の乱数行列を作る方法を調べる 「matlab 乱数」で検索→MathWorks のページへ(実行例)

	matlab 刮約	✓ MathWorks	◆ MathWorks 割品 ソリューション アカデミア サポート コミュニティ (英語) イベント				
Jogie							
	すべて 動画 画像 ショッピング ニュース もっと見る 設定 !	< ドキュメンテーションのホーム		最新のリリースでは、このページがまだ翻訳されていません。 このページの			
	約 15,600 件 (0.46 秒)	< MATLAB < 言語の基礎 < 行列および配列	0	rand 一様分布の乱数			
	一様分布の乱数 - MATLAB rand - MathWorks 日本 https://jp.mathworks.com > > 言語の基礎 > 行列および配列 ▼	< MATLAB < 数学 < 乱数発生器		構文 X = rand X = rand(n) X = rand(r)			
	この MAILAB 関数 は、区間 (U,1) の一様分布したAL&X を 1 つ返しま 9。	< MATLAB < 関数		X = rand(sz) $X = rand(sz)$ $Y = rand(sz)$			
	乱数発生器 - MATLAB & Simulink - MathWorks 日本 https://jp.mathworks.com > ドキュメンテーションのホーム > 数学 ▼	rand 項目─覧 構文		X = rand(,'like',p)			
	疑似乱数のシーケン人を作成するには、関致 rand 、 randn 、 randi を使用します。結果の反復性 ゲーマーレーロー	説明					

キュメンテーション 閉じる 最新のリリースでは、このページがまだ翻訳されていません。 このペ キュメンテーションのホーム rand 0 TLAB 一様分布の乱数 きの基礎 利および配列 構文 TLAB ¥ X = randX = rand(n)放発生器 X = rand(sz1,...,szN)X = rand(sz)TLAB 19 X = rand(____,typename) X = rand(___,'like',p) ١đ 説明 X = rand は、区間 (0.1) の一様分布した利数を 1 つ返します。

ベクトル・行列の要素・範囲へのアクセス

行列の要素を参照したい場合は以下のようにすればよい.

コロンを使った範囲ベクトルで取り出す範囲を指定できる。 コロンのみでは「すべて」を意味する。

※注意 MATLABでは<mark>行列の要素は1から数え始める</mark>. C言語の配列では0から始まるので, 混乱しないよう注意.

ベクトル・行列の演算と関数

よく利用するベクトル・行列の演算と関数は以下のとおり.

要素ごとの演算	:	A.*B, A./B など演算子の前に (ドット)をつける
転置	:	A.'
共役転置	:	Α'
逆行列	:	inv(A)
連立方程式の解		A¥b
固有値・固有ベクトル	/:	[V, D] = eig(A) (Vに固有ベクトル, Dに固有値)
p-ノルム	:	norm(x, p)
行列のサイズ	:	[m, n] = size(A)
サイズの最大値	:	length(A)
要素の最大値	:	max(A)
要素の総和	:	sum(A)

ワークスペースについて

📣 MATLAB R2016a - academic use			━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━========	キャック 赤 米を にもり
ホーム プロット	アプリケーション	🛃 🖶 🔏 🛱 🛱 🗇 😋 🔁 🕐 ^K ≠1×>テ-	ションの機密のすり切住正我の	されている変数情報は
	けます 1	 マコードの解析 テま行および時間の計測 Simulink 環境 マスのクリア ◆ ジュマンドのクリア ◆ 	ワークスペ	ペースで確認可能
ファイル	変数			
	TLAB TA > Documents > MATLAB >			-ス 💿
Afi ▲	>> clear >> A = [1 2 3;4 5 6];		名前 ▲	値
 B MATLAB_lecture B OfficeHour B ProgramingTraining B 採点 ① denki.m 	>> x = [1; 1]; >> I = ones(100, 50); fc >>		100x50 double [1;1]	[1,2,3;4,5,6] <i>100x50 double</i> [1;1]
詳細 へ		 ママンド履歴 eye(4,3) A¥x clc clear A = [1 2 3; x = [1; 1]; I = ones(10) 		4

要素数が多いと「サイズと型」の表示となる ダブルクリックで変数の中身を確認できる (コマンドウィンドウ上で確認するためには コマンドウィンドウで変数名を入力)

スクリプト

スクリプトを利用すると、 コマンドの処理順序を記 録しておくことができる

📝 IŤ	rター - C:¥Users¥matlab_ta_2¥Documents¥N	/IATLAB¥Pŀ
[_	/script.m × +	
1 -	clear	
3 -	A = [1 2];	
4 -	B = [3 4];	
6 -	C \Xi A'*B	
אַעדב	ウィンドウ	
>>	iyscript	
C =		
	3 4	
	6 0	
	6 0	

スクリプトを利用するメリット

- 同じ処理を何度も入力せずに済む
- →複数の実験データに対する処理が楽になる
- ・処理の流れの再利用が容易になる
- ・処理の見通しがよくなる

スクリプトエディタの起動

新規スクリプトをクリック してエディタを起動

スクリプトファイルの保存・実行

スクリプト内にコマンドを記述したら、OO.mという形式で保存 エディタタブ内の実行をクリック

ホーム 日 新規作成 開く	プロット ア: P ファイルの検索 保存 国 比較 ・ 一印刷	プリケーション ↓ A ↓ 移動 ↓ Q 検索 ↓	エディター 挿入 良日本 踊 ・ コメント % % 約 インデント 1 月 月 日	パブリッシュ B ブレークポイント	実行	示 ¥ 実行して 次に進む	 ▲ ▲ セクションの実行 ■ 次に進む 	6 7 8 美行および 時間の計測	9 0 0	メンテーションの検索	<mark>₽</mark> ⊼
	ファイル	ナビゲート	編集	ブレークポイント			実行				
4 + 3	🔒 ► C: ► Users ► MAT	TLAB TA + Dor	cuments 🕨 MATLAB 🕨								- p
現在のフォルダ	- (🕤 📝 エディ	ター - C:¥Users¥MATLAB 1	TA¥Documents¥MAT	LAB¥lectı	ire.m	Т	× ワークス	ペース		\odot
□ 名前 🔺		lectu	re.m × +					名前▲		値	
			C 1					1000			

コマンドでスクリプトを実行するときは, >> OO(保存したファイル名, 拡張子なし) と入力して実行する.

実行のショートカットキーは F5 中断は Ctrl + c (command + c)

例:円周と面積の計算

r = 6; arc = 2*pi*r area = pi*r^2 このファイルをmy_circle.m と保存 実行ボタンかコマンドウィンドウで >> my_circle

スクリプトでよく使う初期化コマンド

変数やプロットの初期化を行うコマンドを紹介する

clear ・・・重要!スクリプトの最初には必ず書くことを推奨 ワークスペースにある変数をすべてクリアする

close

Figure(グラフ)を閉じる close all ですべて閉じる

clc コマンドウィンドウの表示をクリアする

clf Figureウィンドウを閉じずに内容だけクリアする

制御構文(if文)

条件にマッチするかどうかを判定して処理を分岐する

if 条件式1 条件式1を満たすときの処理 よく使う論理演算子 elseif 条件式2 論理和(OR) Π 論理積(AND) && 条件式1を満たさず2を満たすときの処理 否定(NOT) else よく使う比較演算子 どちらも満たさないときの処理 等号 == end 不等式 > や >= など

~=

不等号

制御構文(if文)

(例) 乱数の大きさで条件分岐(一定確率でcの値が変わる)

a = 0.5; b = rand(); % 0~1の一様分布乱数を発生させる	条件式は、数値どうし
if a > b c = 1 % aがbより大きいときに実行される	の比較や、条件どうし の論理演算による結
else c = 0 % aがb以下のときに実行される end	合で表現する。

論理和(OR)	
論理積(AND)	&&
否定(NOT)	~

よく使う論理演算子よく使う比較演算子

等号	==
不等式	> や >= など
不等号	~=

制御構文(for文)

繰り返し処理を行う

for 変数名 = ベクトル	forの
繰り返す処理	要素 [:] 繰り
end	

forの隣で定義したベクトルの 要素をひとつずつ取り出して 繰り返す

例:1から5まで2乗を足す

n = 0;
for k = 1:5
 n = n + k^2;
end

例:ベクトルの中身を足す (通常はsumコマンドを使おう)

※MATLABではi,jは虚数単位を表すので、forではふつうkを使用します

文のネスト(入れ子)

for文やif文を入れ子状にして使うこともできる

```
例:2重ループ
```

※MATLABではi,jは虚数単位を表すので、forではふつうkを使用します

MATLAB Academyで基礎をさらに学ぶ

サービスの使い方

MATLABのツールストリップ(画面上部) から「MATLAB Academy」をクリック

下記URLにアクセス

https://matlabacademy.mathworks.com/jp

または「matlab academy」で検索

matlab academy

ウェブ 動画 画像 ニュース ショッピング

ビング もっと見る 検索ツール

J

Q

約 2,880,000 件 (0.38 秒)

MATLAB Academy

https://matlabacademy.mathworks.com/ ▼ このページを訳す Learn MATLAB interactively, at your own pace, with MATLAB Academy

こんなことが出来ます

WEBブラウザベースのクラウド環境上で、 MATLABのプログラミング演習が可能です。 (※ MATLAB起動は必須ではありません)

MATLAB Onramp 12% complete	» MATLAB academy	
Chapter 3.1 Manually Entering Arrays		
Practice Complete the tasks below.	Task1 ✓ >> x =4 x =	▼ Workspace Name≜
Task 1	4	
Task 2 Info: You can create arrays with multiple elements using square brackets. $\Rightarrow x = [3 5]$ x = 3 5 Create an array named x with two elements in a single row. 7 and 9 Hint Certaclution	Task 2 \checkmark >> x=[7 9] x = 7 9 Correctt Press Space to continue, or Esc to try an alternative solution.	
Task 3		
Task 4		
Task 5		
Task 6		
Task 7		
Eurther presties		

コンテンツは全15章から構成されているため、 自分のペースやスキルレベルに合わせて、 MATLABの基本操作を学んで頂けます。

講習会の流れ

13:30~14:10 1.「MATLABとは?」「何ができるの?」 2. MATLABの基礎 2. データ加囲・ゴオルに使利な継貨の初会トラ

3. データ処理・可視化に便利な機能の紹介と実演

(5分休憩)

14:15~15:00 4. 実践演習(実演の内容を各自で再現していただきます) 5. MATLABの自学用教材の紹介

質問は随時受け付けます. わからなくなったらいつでも聞いてください!

実験レポートのコンテンツの一例

実験対象に関する背景

実験対象について調べ、実験を行う背景や目的について整理する。

- 実験方法・原理
 目的を達成するため実験方法・装置等とその原理について説明する。
- 実験結果

実験データを整理し、結果を示す。ここに考察を含めてはいけない。

▪考察

結果に基づいて意味のある考察を行い、目的が達成されたかどうかを評価する。実験方法の改善の必要があれば、その策について示す。

まとめ

何の実験をどのような目的で行い、どんな方法でどんな結果が得られたのかを簡潔に述べる。

実験データの形式の例

ノートにペンで記録する

→ コマンド入力や変数エディタでMATLABに取り込み可能

- ExcelやOriginに打ち込み、ファイルに書き出す
 → xlsread, csvread等のコマンドでMATLABに取り込み可能
- 実験装置がファイルに出力する
 → fread等のコマンドでMATLABに取り込み可能

変数エディタでのデータ入力

Excelからのデータのコピー&ペーストも可能

データの読み込み・書き込み

MATLABは様々なデータ形式のファイルの読み込み・書き込みに 対応している

load save	MATLABのデータファイル(.mat)を読み書き
xlsread xlswrite	<mark>Excelデータ</mark> (.xls, .xlsx)を読み書き
csvread csvwrite	カンマ区切りファイル(.csv)を読み書き
dlmread dlmwrite	区切りテキストファイルを読み書き
fread fwrite	ファイルポインタとサイズを指定して読み書き (通常はバイナリデータに使用)

Excelデータの読み込み例

C3	*	: ×	√ <i>f</i> _x	
	А	В	С	
1	1	2	3	
2	4	5	6	
3				

')

範囲指定などの高度な 読み込みも可能 (ヘルプを参照)

MATLABを利用したデータ処理の例: ノイズを含むデータの線形回帰

最小二乗法を使って、ノイズを含む x, y データを1次関数 y = ax + b に近似しよう

MATLABコード (x, yは与えられているとする)

MATLABを利用したデータ処理の例: ノイズを含むデータの線形回帰

MATLABの便利機能

多項式フィッティングの場合は関数が用意されている. $y = \theta_1 x^n + \theta_2 x^{n-1} + \cdots + \theta_n x + \theta_{n+1}$

theta = polyfit(x, y, n) x, yを用いてn次の多項式フィッティング

Y = polyval(theta, x) thetaを用いてxの多項式を計算

MATLABの便利機能

フィッティングツール

🔺 曲線近位ツール		- n ×
The matter of the second secon		
ファイル(F) 近似(I) 表示(V) ツール(T) デスクトップ(D) ウィンドウ(W)	ヘルブ(H) ××
🝜 💹 🔍 🔍 🖑 🐙 🔩 📗		
新規近似 1 🕺 🕂		
	久 (王)	
近似名: 新規近似1	夕俱入	~
x - 7. x ×	次数: 1	~
	ロバスト: Off	~
γ ₇ −9: y ~	□ データのセンタリングとフケー	-1157
Z データ: (none) ~		1501+++21-21
重み: (none) 〜		近似オノジョン
結果 7		
線形モデル Poly1:		
T(x) = p1"x + p2 6 係数 (95% の信頼限界		
p1 = 3.035 (2 > 5	in the second second	· ·
p2 = 3.922 (3.	and the second second	• y vs. x
適合度: 4		新規近似 1
SSF- 10.6	0 0.2 0.4 0	0.6 0.8 1
	х	
近似テーブル		\odot
近… 🔺 データ 近似… SSE 決定	DFE 自由 RMSE 係	数 検証 SSE RMS
III.5957 0.88 million (10.5957 1.88) III.5957 I	18 99 0.8806 0.3271 2	

MATLABの便利機能 :ademic use ほかにも... アプリ プロット 変数 Ê 📣 MATLAB R2017a - academic use đ 🖄 📴 🕐 ドキュメンテーションの検索 **b** アプリ Ω ホーム プロット <mark>ጶ</mark> (≡) 🖽 F È P × アプリの お気に入り アプリの さらにアプリを アプリの 🎓 お気に入り パッケージ化 取得 インストール パッケージ化 \square ~ <> 🔶 🔁 🔀 📙 🕨 C: 🕨 Users 曲線近似 最適 ר עבע-ז パイラ 現在のフォルダー - 名前 ▲ Users 数学、統計および最適化 C: create_script_1.png 景適化 曲線近似 create_script_2.png ∕2* ~ curvfit.PNG \sim data.csv Distribution Neural 泉近似 最適化 data.xls Fitter Cluste data.xlsx figure_copy.PNG 制御システム設計と解析 最上部 🛣 figure_copy_word.PNG figure_property_editor.PNG r-D-1 75 \mathcal{M} Х figure_property_editor2.PNG figure_property_editor3.PNG PID 調整器 制御システムデ 制御システム調 線形システム アナ Fuzzy Logic Model Reducer MPC Designer Neuro-Fuzzy System figure_property_editor4.PNG Designer Designer Identification ザイナー 整器 ライザー intro.html 管 intro.mlx 信号処理と通信 最上部 🔺 1 intro.pdf H linear.mat Nr. Nr. Nr Nr Nr Nr Nr intro.mlx (ライブ スクリプト) Bit Error Rate Filter Builder ウィンドウ デザイ ウェーブレット アナ フィルター デザイ 信号アナライザー Eye Diagram Radar Radar **RF Budget** Sensor Array ライザー Analysis Scope Equation Calc... Waveform An... Analyzer Analyzer , - +-ワークスペース 名前 ▲ 値 イメージ処理とコンピューター ビジョン 最上部 👅 0.5000 a Α H 6 A7 30 A [0.8003,0.421 ans [0.7038;0.597 Image Map Viewer OCR トレーナー イメージ イメージ ビューアー イメージのバッチ処 イメージの領域分 イメージの領域解 カメラ キャリブレー ステレオ カメラ ビデオビューアー ボリューム b 0.4854 Acquisition ブラウザー 理 割 析 9-キャリブレーター ドューアー - c 1 24 レジストレーション 学習イメージ ラベ 色のしきい値 推定 5-

実験レポートにおける可視化の重要性

- 実験結果
 - 実験データを整理し、結果を示す。ここに考察を含めてはいけない。
 - ・・・ 結果がわかりやすいようにデータを可視化
- 考察

結果に基づいて意味のある考察を行い、目的が達成されたかどうかを評価する。実験方法の改善の必要があれば、その策について示す。

- ・・・ 考察の根拠を示すためにデータを処理・可視化
- + 可視化の際はレポートの紙面の都合も考えよう
- ・印刷したときに見やすい線の太さ・色、数値、文字
- 一枚のグラフにたくさんの情報を詰め込もうとしていないか?

可視化

MATLABは強力なデータ可視化機能を持っている. MATLABを使うと簡単に下のようなグラフが描ける!

2次元プロット

plot(x1, y1, x2, y2, ..., オプション)

※ >> はコマンドウィンドウでの実行を意味する。入力はしないこと。

グラフの装飾

コマンドを使ってグラフを装飾できる.

例. (先ほどのコードに続けて)

- >> grid on
- >> title('Sine Curve')
- >> xlabel('x')
- >> ylabel('y')
- >> legend('sin(x)')
- >> axis tight

※ >> はコマンドウィンドウでの実行を意味する。入力はしないこと。

グラフの装飾

プロパティエディタを使うと、コマンドを使わずに装飾できる

jure 5: Figure

データ処理と可視化の一連の流れの例: 桜の開花予想

桜の開花予想には、よく知られた経験則がある。 2017年春の東京の気温データから、開花日を予想してみよう。

つぎの2つの経験則がよく知られている。

- 2月1日からの平均気温(°C)の和が400度を超えたら開花
- 2月1日からの最高気温(℃)の和が600度を超えたら開花
 今回は、前者の400度則を使って予想を立ててみよう。

実演

講習会の流れ

13:30~14:10
1.「MATLABとは?」「何ができるの?」
2. MATLABの基礎
3. データ処理・可視化に便利な機能の紹介と実演

(5分休憩)

14:15~15:00 4. 実践演習(実演の内容を各自で再現していただきます) 5. MATLABの自学用教材の紹介

質問は随時受け付けます. わからなくなったらいつでも聞いてください!

「桜の開花予想」をやってみよう

- 必要なファイルは資料に同梱してある
- livescript フォルダの中にある sakura.csv が使用する気温
 データ
- 処理の例と解説は、資料同梱の intro.html にも記載

Step 1. データの読み込み

csvread コマンドで sakura.csv を読み込む

T = csvread('sakura.csv')

- 2月1日を1行目として、
 日ごとの平均気温・最高気温が
 表になっている
- 今回は平均気温のみを使用する
- データを確認したらスクリプトを作成

clear
T = csvread('sakura.csv');

コイント ショントン

```
>> T = csvread('sakura.csv');
>> T
Τ =
    6.0000
              10.6000
    4.5000
               9.7000
    7.4000
              13.7000
    8.2000
              13.4000
    7.2000
               9.9000
    8.7000
              15.7000
    5.6000
              10.0000
    6.3000
              11.0000
    2.4000
               5.4000
```

9.3000

平均気温 最高気温

4.3000

<u>fx</u>

Step 2. 累積和の処理と開花条件の判定

• 平均気温を積算して開花条件を判定する(スクリプトの続き)

for文を使用する場合

```
day_count = 0;
sum_temp = 0;
for k=1:size(T,1) % size(T,1)はTの行数(日数)。日数分繰り返す。
    sum_temp = sum_temp + T(k,1); % 平均気温の和の値を更新
    if sum_temp > 400
        day_count = k; % k日目が答え
        break % for ~ end のループから抜ける
    end
end
day_count
```

for文を使用しない別解(累積和関数cumsumを使用する)

```
day_count = find(cumsum(T(:,1))>400,1)
```

// dd/_count = innu(compon(i((,,,)///+oo))//

day_count =

52 2月1日から数えて52日目が開花予想日

Step 3. 結果の可視化

- 平均気温の累積値を日数に対してプロットする
- 400度の線を引いて、「グラフの交点が開花日である」ことを グラフで説明する

データの準備 SUM AVG = cumsum(T(:,1)); プロット n = size(SUM AVG, 1); plot(1:n, SUM_AVG); hold on plot([1 n], [400 400]);

Step 4. グラフをカスタマイズする

プロパティエディタで自分好みに見た目を変えてみよう

jure 5: Figure

Step 4. グラフをカスタマイズする

MATLAB/Simulinkを使うと...

- 数式処理や高精度な科学・技術計算が簡単にできる
- 豊富な可視化機能を使って結果をグラフに出力できる
- 物理モデルをシミュレーションできる
- 作成したモデルを実際のハードウェアにデプロイできる

アンケートにご協力ください

- 5分ほどで回答できます
- 今後の講習会・ワークショップに反映させていただきます

https://goo.gl/forms/NbXEzZB9xt2xY3Vs2

回答していただいた方にはMATLABステッカーをプレゼント! <u>回答完了の画面を開いたままにして</u>TAに見せてください

MATLABの基本的な使い方講座: MATLAB Academy

サービスの使い方

MATLABのツールストリップ(画面上部) から「MATLAB Academy」をクリック

下記URLにアクセス

https://matlabacademy.mathworks.co

<u>m/jp</u> または「matlab academy」で検索

matlab academy

ウェブ 動画 画像 ニュース

ショッピング もっと見る 検索ツール

J

Q

約 2,880,000 件 (0.38 秒)

MATLAB Academy

https://matlabacademy.mathworks.com/ ▼ このページを訳す Learn MATLAB interactively, at your own pace, with MATLAB Academy こんなことが出来ます

WEBブラウザベースのクラウド環境上で、 MATLABのプログラミング演習が可能です。 (※ MATLAB起動は必須ではありません)

MATLAB Onramp 12% complete	≫ MATLAB academy	
Chapter 3.1 Manually Entering Arrays		
Practice Complete the tasks below.	Task 1 ≠ >> x =4 x =	▼ Workspace Name≜
Task 1 Task 2 Info: You can create arrays with multiple elements using square brackets. >> x = [3 5] x =	4 Task 2 * >> x=[7 9] x = 7 9	
Create an array named x with two elements in a single row:	Correctl Press Space to continue, or Esc to try an alternative solution.	
Task 3 Task 4 Task 5 Task 6 Task 7		
Further prostice		

コンテンツは全15章から構成されているため、 自分のペースやスキルレベルに合わせて、 MATLABの基本操作を学んで頂けます。

MATLAB Academy

お問い合わせ 購入方法 ログイン MathWorks® 製品 ソリューション アカデミア サポート コミュニティ (英語) イベント 会社情報 Q MATLAB Academy MathWorks.com を検索 **CLICK!** MATLAB を学ぼう continue, or $\overline{(\epsilon_{N})}$ to by an alternative solution 登録済みのコースを表示 コース一覧 MATLABのプログラミ MATLAB によるデータ MATLAB 入門(日本語) MATLAB 基礎(日本語) ング手法(英語) 処理と可視化(英語) MATLAB入門 MATLAB入門(日本語) このコースにアクセスするためにはログインする必要があります。ログイ MATLABの基本的な操作について学習できます。 ンするとコースの進捗状況を確認でき、またブラウザ上から直接 MATLAB を使用することができます。 MathWorks アカウントへのログイン メールアドレスまたはユーザー ID ログインして学習を始めてください。 パスワードをお忘れですか? [タイトルなし]

困ったときのヘルプ機能

MATLAB Central

MATLAB / Simulink ユーザのコミュニティサイト

世界中の MATLAB / Simulink ユーザが、作ったプログラムをシェアし合ったり、意見交換をしたりしています。 MATLABの標準ではない機能もここなら見つかるかも…

http://www.mathworks.co.jp/matlabcentral/

Link Exchange 🚽 📿

🖡 評価版

MATLAB Link Exchange

MATLABの教材へのリンク集:様座なトピックの教材がある

- 確率統計
- 心理学
- 経済学
- 画像処理
- etc⋯

Link Exchange							japanese
MathWorks®	製品	ソリューション	アカデミア	サポート	コミュニティ(英語)	イヘ	シト

MATLAB Central - Home Submit a Link Advanced Search

Search Results For "japanese"

View All Links By: Most Recent Most Clicked

Date: Updated Submitted Time Frame: All Time Last 30 Days Last 7 Days					1 - 16 of 16	
Date 🔺	Link	Tags	Clicks	Descripti ons	Ratings	
26 Dec 20 14	MATLABを使った確率統計[Probability and statistics with MATLAB] MATLABを使った確率・統計の基礎的な理論と演習、統計処理の 講義 Contributed by: MathWorks Classroom Resources Team	academic, computer sc, country jp, course mate, digital sig	74	1		
9 Jun 201 4	Simulink Library for Natural Interaction Device (NID) Simulink library for working with Natural Interaction devices such as Kinect and Asus Xtion Contributed by: MathWorks Classroom Resources Team Updated by: megha	academic, computer sc, country jp, country us, downloadabl	150	2		
10 Jan 20 13	MATLAB 使い方入門 MATLABを用いた線形計算、行列の解析的性質等の講義資料。線 形計算ライブラリイの発展で確行列、逆行列計算への注意等、他 では言及されていない内容も記載されている。 Contributed by: MathWorks Classroom Resources Team	academic, computation, country jp, course mate, language ja	250	1		

https://jp.mathworks.com/matlabcentral/link exchange/?term=japanese

チュートリアルー覧(無償)

http://jp.mathworks.com/academia/student_center/tutorials/

MATLAB チュートリアル MATLAB の基礎について学習します。 »詳しく知る

Simulink チュートリアル 動的システムをモデル化する方法などの基礎につい て学習します。

» 詳しく知る

信号処理チュートリアル 信号処理システムの設計およびシミュレーションに ついて学習します。

» 詳しく知る

制御システム チュートリアル 制御システムのモデル化、解析、および設計方法に ついて学習します。 >> 詳しく知る

計算数学チュートリアル 最適化などの数値的手法の適用方法について学習します。 »詳しく知る

計算数学

Simulink自学手段

MATLAB Codyはさまざまなプログラミングの問題が用意されているweb上の コミュニティサイト

プログラミングスキルの向上やMATLABユーザ同士の交流に 一部 Simulinkにも対応⇒<u>Modeling and Simulation Challenge</u>(リンク)

MATLAB Office Hour

インストールから実践的な使い方まで、 MATLAB/Simulinkに関する質問にTAが対応します!

実施時間(2017 3Q)

月曜日	火曜日	水曜日	木曜日	金曜日
9:00	13:20	10:45	10:45	10:45
I	I	1	1	1
12:15	14:50	12:15	14:50	14:50

場所 : ■ 南3号館2階リフレッシュルーム ■ 図書館3階グループ研究室

連絡先: sim_edu@citl.titech.ac.jp